友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

格式塔心理学原理-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



场处于同质的黑暗中,其中只包含两个发光物体,一个发光物体处于客观运动状态,另一个发光物体则处于静止状态。于是如果运动的速度不是太大的话,那么,主要的决定因素将是两个物体的相对移置。根据我们的理论,它导致可见运动,不过,我们的理论并不允许我们去推论这些物体中哪个物体是运动的载体,只要它们相对移置,没有任何其他因素起作用便可。但是,我们的理论包含了其他概念,它们提示了解决这个问题的一种方法。 
    参照系 
    让我们回到物体和格局的区分上来,回到格局比格局内的物体更加稳定的知识上来。如果我们将此用于运动的情形,我们必须推论出以下的命题:如果两个场物体中的一个具有对另一个场物体的格局功能,那么,这个场物体将被看成是静止的,而另一个场物体将被看成是运动的,不论这两个场物体中哪一个实际上是运动着的。另一方面,如果这两个物体都是事物,那么,在对称条件下(在它们之间凝视或者自由地漫游式注视),两者将以相反方向运动。 
    上述两种推论在邓克尔的实验中均得到证实。他还发现「特林(Thelin)在他之前已经发现」,对两个相等物体之一进行凝视,倾向于使它成为运动的载体,不论它在客观上运动与否,对此事实,他暂时用物体-格局的区分来解释,或者用图形-背景的区分来解释,凝视点保持了它的图形特性,而非凝视点则成为背景的一部分。邓克尔的发现为奥本海姆(oppenheimer)的一项研究所详细证明,该研究报告刚刚问世。对于奥本海姆的研究结果,我只想提出两点:(1)物体的相对强度起着一种作用,较强的物体倾向于成为较弱物体的参照系(frame of reference);因此,如果其余条件保持不变的话,较强的物体将处于静止状态,而较弱的物体则处于运动状态;(2)物体的形状的下列方式决定似动运动(apparent motion):如果两个物体之间的相对移置以这样的方式发生,即它的方向刚好与一个物体的主要方向之一重合,而不与另一个物体的主要方向之一重合,那么,前者比后者将倾向于看上去移动得更远些。由此可见,相对移置并不决定运动载体,而是在这些条件之下,决定了运动的量。这是一个不变因素(invariant),不论一个点在运动时被看到,还是两个点在运动时都被看到。事实上,正是邓克尔引入不变因素这一概念(尽管他并没有使用这个术语),这种不变因素的概念在我们讨论的知觉组织方面硕果累累。如果只有两个物体参与其中,那么,不论是两个物体彼此相等还是其中一个是另一个的格局,运动振幅的不变性都能适用。一俟第三个物体进入,这种不变性便不再保持。如果a是b的格局,b是c的格局,而客观上b是运动着的,那么,就会发生两种不同的相对移置;b在它自己的格局a里面改变了它的位置,而C则在它的格局b里面改变了它的位置。由此条件产生的两种可见运动之和将比下述情况更大,即如果b的运动恰恰与先前一样,而物体a或物体c却被移去,由此产生的可见运动与上述的两种可见运动之和相比,前者将会更大。邓克尔讨论了第三种物体和其他两种物体之间的可能关系,并且用实验方法指出,对可见运动的影响有赖于它们之间附属(appurtenance)的种类和程度。格局的多元性,或者参照系,还具有另一种重要的效应,该效应首先由鲁宾(Rubin)于1927年予以确认。他那独创的精心设计的实验由邓克尔给予补充。这里,我将仅仅讨论一个十分简单的例子,正因为它为人们所熟悉,从而显示出其独特性。如果我们连续地观看地面上滚动的车轮,那么,我们可以同时看到两种运动,一种是圆周运动,一种是直线平移运动。实际上,轮子的每一点除了轮子中心以外,都在描绘旋轮线(cycloids),它的形状与圆的形状完全不同;而轮子中心则进行了纯粹的平移运动。但是,轮子的各点都以轮子中心作为它们的参照点,而中心本身则涉及到一般的空间格局,或者说,当房间处于黑暗状态时,轮子中心则涉及到观察者自己(参见下一段)。实际观察到的双重运动是这种参照系分离的结果。如果在轮子转动时,轮子中只有一点(不是轮子中心)可以看到,那么,旋轮线曲线上的运动便可见到。如果加上轮子中心(邓克尔),那么上述现象便立即发生变化,不同的现象产生了,它部分地依赖于轮子的运动速度,而轮子的全部运动具有这样的共同特征,即边缘的点描绘出旋转的运动。如果我们不去加上轮于中心,而是加上像第一点一样的同心圆上的一点,那么,根据鲁宾的实验(他是以稍稍不同的运动模式进行实验的)进行判断,我们便可看到两个这样的旋轮线运动。如果我们增加这些点的数目,便可以很快得到正常的轮子效应,也就是说,我们看到所有的点围绕一个看不见的中心旋转,与此同时还看到平移运动。 
      作为场物体的自我 
    读者可能提出的一种异议将把我们引向一个十分重要的概括。我们已经选择了一个最简单的例子,在该例子中,两个物体都在场内。但是,有可能也看到运动中的一个点。这难道不与我们的理论相冲突吗?如果我们的考虑仅限于“环境场”的话,那么将会发生冲突,不过,这样一种限制将是不适当的;我们在不同场合曾经看到,场过程不可能在不包括自我(Ego)的情况下进行详尽的处理。自我如何适合我们的理论将在后面两章加以讨论;在我们讨论的这一点上,就其本身而言,我们必须把它视作一个场物体。一个点的运动是两个物体的彼此移置,也就是说,这两个物体是点和自我。实际上,当场内有两点时,我们需要处理三个物体。然而,邓克尔成功地排除了自我的影响,他通过缓慢的速度和小的偏移来进行研究,结果使它们对自我来说成为阈下的了,或者是阈上的了。如果它们是阈下的话,那么,仅仅两点的相对移置便具效果;如果它们成为阈上的话,那么便会出现新的结果。作为第三物体的自我可以如此强烈地与两点中的一点结合起来,致使它参与到它的运动中去。这种结合是通过凝视来达到的。一个被凝视的物体并不改变它与自我的视觉体系的关系,不论它在客观上是运动的还是静止的。因此,在用点来进行的实验中,对客观上静止的点进行凝视的被试看到该点处于运动中,并同时体验他们自己眼睛的活动(邓克尔,P.201)。如果两个物体之一是一个将另一个点封闭起来的矩形,而且,如果这个非运动的点被注视着,那么,“一个人关于静止的自我印象便丧失;空间水平成为不稳定的了,甚至会发生晕头转向现象,即一个人觉得自己的身体僵硬地与那个点相联系,沿着那个(在现象上或多或少静止的)矩形移动”(邓克尔,p.206)。 
    因此,“自我”的表现如同任何其他场物体一样,这种观点可由两种普通的观察来证实:月亮看上去从浮云中穿过;当我们站在桥上,凝视着水中的一座桥墩时,我们似乎在溯流而上。这两种情形的道理是一样的,被闭合的物体载着运动,而第二个例子中的自我则参与了它的运动,因为通过凝视自我牢牢地与它结合起来了。 
    同一性:过程的融合 
    现在是陈述我们理论中迄今为止一直隐藏着的一个方面的时候了。我们把运动知觉解释成是由于过程模式的离位(dislo-cation)。如果一个物体被看作处于运动之中,我们便假设,与它的知觉相一致的过程分布(process distribution)依照其他过程分布而被移置。这意味着,在可见运动的过程中,与一个物体相一致的过程分布在动力上保持同一,尽管它在其他过程分布的场内进行转移。由于我们迄今为止只在静止场内处理统一和分离,也就是说,不涉及时间,因此,改变其位置的一个过程的同一性(identity)便是一个新问题,正如我们将在后面看到的那样,它充满了有意义的结果。我们能以下列方式表述这个问题:如果一个光点穿过视网膜,那么,新的锥状细胞便会不断受到刺激,新的过程便不断地传入视网膜中心。锥状细胞是一些分离的结构,它们以具有可变强度的精细镶嵌遍布于视网膜上;因此,一个连续移动的光点会根据光点经过的雄状细胞数目引起分离的和有限的
返回目录 上一页 下一页 回到顶部 0 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!