友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

策略思维-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



个参与者轮流决策。每个参与者在前一个分枝做决策时必须向前展望,而且考察的范围不应仅局限于他自己的决策,还要包括其他参与者的决策。他必须对其他人的下一步决策进行预计,办法就是置身于其他参与者的地位,按照他们的思维方式进行思考。为了强调一下这个做法与前面一个做法的区别,我们把一棵反映一场策略博弈当中的决策次序的树称为“博弈树”,而把“决策树”留做描述只有一个人参加的情形。
虽然查理·布朗的故事简单得简直令人难以置信,不过,你还是可以通过将这个故事放进一棵博弈树,开始熟悉博弈树的概念。这个博弈从露西发出邀请开始,查理·布朗面临的选择是要不要接受邀请。假如查理拒绝邀请,那么这个博弈到此为止。假如他接受,露西就有两个选择,一是让查理踢中那个橄榄球,二是把球拿走。我们可以通过添加一个分枝的方法描绘这个故事。
正如我们在前面说过的那样,露西有两个选择,即图2…4中的上下两个分枝,查理应该预计到她一定会选择上面那个分枝。因此,他应该置身于她的地位,从这棵树上剪掉下面那个分枝。现在,回到他自己的两个选择,也是上下两个分枝,假如他选择上面那个分枝,结果一定是仰天跌一大跤。因此,相比之下,他更好的选择是沿着下面的分枝前进。
                      把球拿走
              露西
      接受
查理                  让查理踢
      拒绝
图2…4 
为了进一步了解这个思路,我们不妨设想一个包含同样一棵博弈树的商界中的例子。我们不想惹恼任何一个真实存在的公司,在此先向格雷厄姆·格林(Graham Greene)道歉,我们借用的是他的例子:假设在卡斯特罗执政之前的古巴,吸尘器市场由一家名为“快洁”的公司独占,一家名为“新洁”的新公司正在考虑要不要进军这个市场。假如‘新洁”决定进入,“快洁”将面临两个选择:一是接纳“新洁”,和平共处,满足于一个与以前相比降低了的市场份额,二是打一场价格战。① 假设“快洁”接纳“新洁”;后者就可以赚得10万美元利润,但是,假如“快洁”发动一场价格战,就将给“新洁”造成20万美元的损失。假如“新洁”决定留在市场外而不进入,那么它的利润当然为零。下面我们画出这棵博弈树(如图2…5 所示),标明每一种结果会带来什么样的利润。
① 在格林(Greene)写的《我们在哈瓦那的人》(Our Man in Havana)一书中,为这两家公司当中一家工作的销售员决定打仗,只不过用的是毒药而不是价格。
                 接纳     新洁得10万美元   
        快洁
                 打价格战 新洁亏20万美元          
    进入
新洁
    不进入  新洁得0 美元
图2…5
“新洁”应该怎么办?这是决策分析员需要解决的问题,也是商学院里讲授的问题。他们会画出一幅非常相似的图,却称之为“决策树”。理由是,他们通常把“接纳”和“打价格战”两种选择方案的结果看做偶然现象。因此他们会标出两者的出现概率。比如,假如他们认为接纳与打价格战出现的机会一样大,那么两者的概率同为1/2。接着,他们可以计算出“新洁”进人市场会得到多少利润,方法是将盈利和损失分别乘以相应的概率再相加。他们得到
1/2*100000…1/2*200000=…50000
由于这是一个亏损数字,商业分析员们就会根据这些概率下结论说“新洁”不应该进军古巴市场。
以上的估计数字是从哪里来的呢?博弈论提供了答案:它们来自“新洁”自己对“快洁”在各种情形下的利润情况的估计。要估计“快洁”会怎么做,“新洁”首先应该估计“快洁”在不同情形下会得到多少利润。然后通过向前展望、倒后推理,预计对方会怎么做。进一步分析这个例子:我们假设“快洁”作为一个垄断者,有能力赚取30万美元利润。与“新洁”分享市场则意味着自己的利润降为10万美元。另外,从“快洁”这边估计,发动一场价格战的代价是10万美元。现在我们可以在这棵树上添加这些结果(如图2…6 所示)。
           接纳     新洁得10万美元快洁得10万美元
       快洁
           打价格战 新洁亏20万美元快洁亏10万美元
    进入
新洁
    不进入          新洁得O美元快洁得30万美元
图2…6
我们利用这棵树包含的信息预计以后的全部招数。由于具体招数可以由这个博弈的结果确定,这棵树完全适合看做一棵博弈树,而不是一棵决策树。比如,要预计“快洁”对“新洁”进入的反应,我们知道,“快洁”接纳“新洁”的话仍会有10万美元利润,发动价格战则会损失10万美元;“新洁”应该预计到“快洁”会选择前者。向这个方向展望,同时倒后推理,“新洁”应该在盘算的时候先把打价格战这个分枝去掉。它应该进入这个市场,因为预计它可以赚到10万美元。
若是换了其他环境,最后的决策可能发生变化。比如,假设“新洁”下一步有可能继续进军“快洁”早已建立市场的其他岛屿,“快洁”大约会觉得有必要在这个新来者面前摆出一副不好对付的样子,宁可在古巴损失10万美元也要发动一场价格战。“新洁”应该看到,这意味着自己注定会损失20万美元,最后决定还是留在外面,不要硬闯的好。
“新洁”可以看出任何一个得失数字都会转化为相应的行动。不过,它自己可能并不知道“快洁”在这棵树的顶端会得到什么样的回报。这种利润的不确定性将会转化为行动的不确定性。比如,“新洁”可能认为,有33。3%的机会“快洁”会在一场价格战中损失10 万美元,有33。3%的机会双方会打个平手(利润为零),最后还有33。3%的机会“快洁”即便打价格战也能赚到12万美元。若遇到这种情况,“向前展望,倒后推理”会认为,有2/3 的概率“快洁”会选择接纳“新洁”——赚到10万美元总比损失10万美元或双方打个平手要好,只比不上赚到12万美元。因此,发动一场价格战的可能性是33。3%。要弄清究竟会发生什么情况,惟一途径就是进军市场。不过,基于上述可能性,“新洁”有2/3 的概率赚到10万美元,1/3 的概率损失20万美元,因此,它的预计利润实际为零,根本没有理由进军市场。
在这个例子里,“新洁”对于“快洁”的得失的不确定性直接转化为对“快洁”会有什么反应的概率估计。不过,我们必须注意应该在哪里加人这种不确定性。正确的地方是在树的末端。现在就来看看,假如我们在考虑的时候企图跳到前面去会犯什么错:平均而言,“快洁”可以在一场价格战当中赚到6667(即1/3*120000+1/3*0…1/3*100000 )。但这并不意味着“快洁”就一定想打价格战。愿意打价格战的可能性不是100%。而且这种不确定性并不表示我们就应该猜测“快洁”愿意打价格战的可能性是50%。对“新洁”而言,分析这个问题的正确思路是从这个博弈的终点着手,预计“快洁”每一步会怎么做。
5 .更加复杂的树
在现实生活里,你会遇到的博弈远比上述我们用来进行形象描述的例子复杂。不过,即便这些“小树苗”长成“大树”,同样的原理也依然管用。象棋(国际象棋)可能是最好的例子。虽然象棋的规则相对比较简单,却已经形成一种需要进行策略推理的博弈游戏。白棋先行,黑棋回应,双方依次相继移动。因此,象棋当中最“纯粹”的策略推理就包含着向前展望你自己这一步将会导致什么后果,就跟我们在前面看到的一样。其实例可能是这样:“假如我现在走兵,我的对手就会进马,威胁我的车。我在走兵之前必须用我的象护住那四个格子,不让对手的马得逞。”
象棋是一种相继出招的博弈游戏,我们可以用一棵树来表示。白方可以从20种开局方式中任选一种。'2'在图2…7 中,我们用这棵树的第一个决策点(或节点)表示白方拥有的第一个先行机会,标为W1。他可以选择的20种走法变成20个枝条,从这个节点发散出去。每一个枝条代表的行动方式就是这个枝条的标签:兵进K4 (P…K4 或代数标记法里的e4)、兵进Q4 ,等等。我们的目的只是描述普遍情况,因此,为了避免这幅图表变得枝节丛生,我们不会显示或标明所有枝条。每一个枝条
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!